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The model of an electric circuit with dichotomous resistance is investigated. It is shown that the dichoto-
mous resistance can induce a phenomenon of stochastic giant resonance for the signal-to-noise ratio �SNR� as
a function of input signal frequency. This phenomenon is a direct consequence of the existence of a zero noise
power spectrum, with a nonzero signal power spectrum for the same parameters. In addition, two kinds of the
usual stochastic resonance phenomena have been obtained for the SNR. One is as a function of the correlation
time of the asymmetric dichotomous resistance; the other is as a function of the input signal frequency.
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The phenomenon of stochastic resonance �SR� caused by
the appearance of noise has attracted considerable interest
recently due to its many applications in biology, physics,
chemistry, and other scientific fields �1–8�. Not only is the
number of publications on SR phenomenon growing steadily,
but much extension of the conception of SR has appeared,
such as double SR �2�, stochastic multiresonance �3�, coher-
ence resonance �generated in the system without an external
force� �4�, quantum SR �5�, control of SR �6�, autonomous
SR �7�, aperiodic SR �8�, etc.

In the present paper, we will study a model of an electric
system with a dichotomous resistance and subject to an input
periodic-voltage source and a constant-voltage source. Some
unusual and usual behaviors will be reported: The dichoto-
mous resistance can induce a phenomenon of stochastic giant
resonance for the signal-to-noise ratio �SNR� as a function of
input signal frequency. In addition, two kinds of usual sto-
chastic resonance phenomena can be obtained for the SNR.
One is as a function of the correlation time of the asymmetric
dichotomous resistance; the other is as a function of the input
signal frequency.

We wish to analyze the dynamic behavior of the circuit
system schematically depicted in Appendix A of our recent
publication �9� �refer to Fig. 6 in Ref. �9��. Now, all its ele-
ments are conventional except for a dichotomous resistance
r�t�, which fluctuates between two values ra and rb with
mean waiting times ta and tb, respectively. This can be
achieved by inserting into the circuit a point contact whose
conductance is controlled by an asymmetric two-level sys-
tem tunneling incoherently between the two states with rates
�=1/ ta and ��=1/ tb �10,11�. Accordingly, the fluctuations in
the point-contact resistance can be modeled as a stationary
Markovian dichotomic process �telegraphic noise�.

The dynamics of the circuit is governed by the stochastic
differential equation

L
di

dt
+ �R + r�t��i = a sin��t� + U0, �1�

where r�t��ra ,rb �ra�rb�0� is the dichotomous resistance
which is a telegraphic noise, L the electric inductance �con-
stant�, R the electric resistance �constant�, U0 the constant
voltage, and a sin �t an ac oscillatory voltage. For generality,
we assume that �r�t��= �ra�+rb��� / ��+���=g0, in which g0

is a constant. The covariance function of the asymmetric

dichotomous noise r�t� is �r�t� ,r�t���= �r�t�r�t���− �r�t��2

=D� exp�−� � t− t� � �. Here �= ��+��� is the reverse of the
correlation time � of the asymmetric dichotomous noise,
and the definition of the strength of the asymmetric dichoto-
mous noise is D= �1/2��−�

+��r��� ,r�0��d�= �−rarb+ �ra+rb�g0

−g0
2� /�= �ra−rb�2��� / ��+���3. We can find that the noise

strength D is not independent, but is connected with the cor-
relation time �=1/�, g0, and ra,b of the noise, or with ra, rb,
�, and ��.

In Appendix A of Ref. �9�, we discussed the same circuit.
But only under the condition that ��=k�, r�t�=−��t�+g in
which ��t� takes values −E and kE, E= �ra−rb� / �1+k�, and
g= �kra+rb� / �1+k�, Eq. �1� in this paper �or Eq. �A1� in Ref.
�9�� can become Eq. �1� investigated by us in Ref. �9�. Oth-
erwise, Eq. �1� in this paper �or Eq. �A1� in Ref. �9�� is quite
different from Eq. �1� studied by us in Ref. �9�. So the main
result which we will obtain in this paper—i.e., a phenom-
enon of stochastic giant resonance—could not be found for
Eq. �1� studied by us in Ref. �9�. In addition, the investiga-
tion made in Ref. �9� is about the usual stochastic resonance,
while the present study is mainly focused on the phenom-
enon of stochastic giant resonance �it is a bona fide reso-
nance�.

In order to make the calculation conveniently, we assume
r�t�=	�t�+g, where 	�t� is a dichotomous noise, which takes
two values c and −c, g is a constant, the transition rate from
c to −c is � for 	�t�, and the reverse transition rate is ��.
Taking the ensemble average of r�t�=	�t�+g, we can obtain
�	�t��=g0−g. We can also derive the correlation function of
	�t�: �	�t�	�t���= �g0−g�2+D� exp�−� � t− t� � �. Using the re-
lations between the dichotomous noise ��t� and the dichoto-
mous noise 	�t�, we can get c= �ra−rb� /2 and g= �ra+rb� /2.
Substituting r�t�=	�t�+g into Eq. �1�, we get

di

dt
= −

�R + g�
L

i −
	�t�

L
i +

a

L
sin��t� +

U0

L
. �2�

Multiplying i�t�� on both sides of Eq. �2� and taking the
average over noise after that, we can obtain

d�i�t�i�t���
dt

= −
�R + g�

L
�i�t�i�t��� −

�	�t�i�t�i�t���
L

i +
a

L
sin��t�


�i�t��� +
U0

L
�i�t��� . �3�

We can find that there is one new correlation factor
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�	�t�i�t�i�t��� to appear in this equation. To solve the equa-
tion, we will make use of the well-known “formula of dif-
ferentiation” �12� proposed by Shapiro and Loginov and ex-
tensively used in Ref. �13�. For the form of �	�t�i�t��, the
formula reads �14�

d�	�t�i�t�i�t���
dt

= − 	� +
�R + g�

L

�	�t�i�t�i�t��� + ���g − g0�

− c2/L��i�t�i�t��� + 	 a

L
sin �t +

U0

L




�i�t��	�t�� , �4�

in which we have used 	2�t�=c2 and �	�t��=g0−g.
From Eqs. �3� and �4�, we can get the expression of

�i�t�i�t��� in the limit of t→�. Then, let �t− t� � =� �t�= t+�
and t�= t−�, respectively�. Because the correlation function
�i�t�i�t±��� depends on both times t and �, we should take
the average about t within a period of 2��−1. After that, we
can get

��i�t�i�t ± ����t = w1 cos �� + w2 sin �� + w3 cos ��e−����

+ w4 sin ��e−���� + G5 + G6e−����, �5�

where w1, w2, w3, w4, G5, and G6 are the functions of �, U0,
L, R, a, g0, �, ra, and rb �since the expression of them are
very long, I give the expression of them in Appendix A�.

The power spectrum is

S��� = �S����t + �S�− ���t

= N1
��� + N2
�� − �� + N3

= 2G5
1

2�

��� +

w1

2�

�� − �� +

w3

2�
� 2�

�2 + �� − ��2

+
2�

�2 + �� + ��2� +
1

�

�G6

�2 + �2 , �6�

in which �S����t=�−�
� ��i�t�i�t±����t exp�−i���d�.

Notice that the spectrum �6� divides naturally into three
parts: the zero-frequency output that is a 
 function at the
zero frequency, the signal output that is a 
 function at the
signal frequency, and the broadband noise outputs that are
three Lorentzian bumps centered at �=0, �=−�, and �
=�, respectively.

So the SNR can be obtained as

SNR = 
 N2���
N3��,��



�=�

= � w1

2�G6

�2 + �2 + w3	 2

�
+

2�

�2 + 4�2
� .

�7�

Below let us first analyze the power spectrum of the noise in
Eqs. �6� and �7�. It is

SN = N3���,����=� =
�G6

���2 + �2�
+

w3

�
	 2

�
+

2�

�2 + 4�2
 .

�8�

Let SN=0; from Eq. �8�, we can get

a10�
10 + a8�8 + a6�6 + a4�4 + a2�2 + a0 = 0, �9�

in which a10, a8, a6, a4, a2, and a0 are functions of �, U0, L,
R, a, g0, ra, and rb �I give the expression of them in Appen-
dix B�. If Eq. �9� has positive real roots for some values of
the given parameters �, U0, L, R, a, g0, ra, and rb, the noise
power spectrum will become zero when the frequency of the
signal equals these positive real roots of Eq. �9�. Then, when
� is in the vicinity of these positive real roots of Eq. �9�, with
the nonzero value of the power spectrum of the signal �i.e.,
N2��� in Eq. �7�� for the same parameters, we can get a
phenomenon of huge resonance for the SNR. For conve-
nience, in this paper, we call this phenomenon “stochastic
giant resonance.”

In Fig. 1, we plot the SNR versus ln �, with U0=0.05,
R=1, �=2.71828, ra=2, rb=0.2, g0=0.3,L=0.5, and a=0.2,
in dimensionless form. The parameters values chosen in Fig.
1 should satisfy Eq. �9� with some real roots �this can be got
by solving Eq. �9� with different parameters values� and non-
zero signal power spectrum for the same parameters. This
figure shows the emergence of the stochastic giant resonance
phenomenon. For the given parameters U0=0.05, �
=2.71828, R=1, ra=2, rb=0.2, g0=0.3, L=0.5, and a=0.2,
Eq. �9� has two positive real roots �the signal power spec-
trum is now nonzero, which can be easily got by substituting
these parameters values into N2��� in Eq. �6��. They are
�1�1.49 and �2�12.81, which corresponds to the points
�1� and �2� in Fig. 1, respectively. So, for the fixed param-
eters U0=0.05, �=2.71828, R=1, ra=2, rb=0.2, g0=0.3, L
=0.5, and a=0.2, when �=�1 or �=�2, the noise power
spectrum is zero and the signal-to-noise ratio tends to infin-
ity. Then, when � is in the vicinity of �1 or �2, we can get
the phenomenon of stochastic giant resonance. Now it should
be mentioned that, with the emergence of the stochastic giant
resonance in Fig. 1, the amplitude of the intensity of the
output signal �i.e., �i�t��� does not in turn shows a maximum
��i�t�� is easily got by solving a equation which is got by
averaging the two sides of Eq. �2� and using the well-known
“formula of differentiation” �12��.

Except for the phenomenon of stochastic giant resonance,
the SNR for Eq. �1� can exhibit two kinds of the usual sto-
chastic resonance phenomena. One is as a function of the
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FIG. 1. The SNR versus ln��� with U0=0.05, R=1, �
=2.71828, ra=2, rb=0.2, g0=0.3, L=0.5, and a=0.2 in dimension-
less form. The circle points are the results of numerical simulations
with the above fixed parameters.
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correlation time of the asymmetric dichotomous noise �see
Fig. 2�. The other is as a function of the input signal fre-
quency �see Fig. 3�. From Figs. 2 and 3, we can see that the
dichotomous noise and input periodic signal play two roles.
On the one hand, they stimulate coherent motion with an
increase of the asymmetry of the system; this motion does
not exist in the absence of the noise and input periodic sig-
nal. On the other hand, they reduce the coherent motion with
a decrease of the asymmetry of the system. The competition
of these two opposite roles leads to the phenomenon of reso-
nance. When the frequency of the input signal is equal to the
intrinsic frequency of the system �16�, the phenomenon of
resonance appears �1�. To verify this, we have made some
numerical calculations for the system frequency controlled
by noise when the resonance occurs in Figs. 2 and 3. Nu-
merical calculations show that the phenomenon of resonance
appears when the signal frequency equals the system fre-
quency controlled by the noise �in Fig. 2, with the appear-
ance of resonance, the system frequency f �0.33, now the
signal frequency fs=� /2�=2.3/2��0.33; in Fig. 3, with
the emergence of resonance, the system frequency f �0.32,
now the signal frequency fs=� /2�=2/2��0.32�. So the
parameters values chosen in Figs. 2 and 3 should satisfy the

condition that, by controlling the noise, there will be one
point in the x axis �the x axis in Fig. 2 is the � axis; the x axis
in Fig. 3 is the � axis� in which the system frequency is
equal to the signal frequency �this can be obtained by suit-
ably selecting the parameters values�. With the appearance of
the usual stochastic resonance in Figs. 2 and 3, the amplitude
of the output signal �i.e., �i�t��� correspondingly represents a
maximum ��i�t�� can be easily got by solving a equation
obtained by averaging Eq. �2� and using the well-known
“formula differentiation” �12��.

The results plotted in Figs. 1–3 are the results of a long
algebraic calculation. A comparison with numerical simula-
tions would help appreciate the correctness of the algebra.
So, in Figs. 1–3, we give some results of the numerical simu-
lation �see the circle points in these figures� �15�.

Dichotomous noise contains as limits both white Gaussian
noise and white shot noise; below, we consider the two lim-
its. First, we consider the white-Gaussian-noise limit. In the
limit of � ,��→�, i.e., �→�, ra and rb→�, and D
= �−rarb+ �ra+rb�g0−g0

2� /�=const our asymmetric dichoto-
mous noise becomes Gaussian white noise. Now, considering
�→�, ra→�, rb→�, and D= �−rarb+ �ra+rb�g0−g0

2� /�
=const, constant, we can get the amplitude of the average
electric current �i.e., the amplitude of the output signal�: A
= �a /L��1/ ��2+ �D /L2− �R+g� /L�2�. The white-shot-noise
limit is �ra /rb�→�, ��→�, and rb=const, which is equiva-
lent to the limit of �→�, �ra /rb�→�, D=const, and rb

=const. Now, by using �→�, �ra /rb�→�, and �−rarb+ �ra

+rb�g0−g0
2� / �rb��=D /rb with D=const and rb=const, the

amplitude of the average electric current can be obtained as
A=0. So it is clear that, in the limits of Gaussian white noise
and Poissonian shot white noise, no phenomena of usual sto-
chastic resonance appear for Eq. �1�. Similarly, by calculat-
ing the SNR in the limits of Gaussian white noise and Pois-
sonian shot white noise, we cannot find the phenomenon of
stochastic giant resonance to occur.

In addition, the results shown in Figs. 1–3 are those for
the case of k�1—i.e., the asymmetry case for the dichoto-
mous resistor. If the noise is not asymmetric—i.e., the noise
has the same transition rates to the both states �k=1�—as
long as Eq. �9� has positive real roots �with the nonzero
value of the power spectrum of the signal for the same pa-
rameters�, we can get the stochastic giant-resonance phenom-
enon as reported above; now the usual stochastic resonance
phenomena as in Figs. 2 and 3 can also be found for some
certain values of parameters. In a word, the asymmetry of the
dichotomous resistor is not the necessary condition for the
appearance of phenomena reported in this paper.

Dichotomous noise can often emerge in condensed mat-
ters, biological systems, and chemical systems. For the first
example, we consider the semiconductor. We assume that the
bound energy band of the electrons is �0�T ,k ,m�, in which
k= p /�, p is the momentum, T the temperature, and m
=1,2 , . . . ,M; the first excitation energy band is �1�T ,k ,n� in
which n=1,2 , . . . ,N; the transition rate from �0�T ,k ,m� to
�1�T ,k ,n� and vice versa are, respectively, �mn and �nm� . It is
clear that the transition of the electrons from �0�T ,k ,m� to
�1�T ,k ,n� and vice versa constitutes just one asymmetric di-
chotomous noise. For the second example, we consider the
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FIG. 2. The SNR versus ln��� with U0=0.5, R=1, �=2.3, ra

=1, rb=0.2, g0=0.5, L=0.5, and a=0.2 in dimensionless form. The
circle points are the results of numerical simulations with the above
fixed parameters.
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FIG. 3. The SNR versus ln��� with U0=0.15, R=1, �
=2.71828, ra=2, rb=0.2, g0=0.3, L=0.5, and a=0.2 in dimension-
less form. The circle points are the results of numerical simulations
with the above fixed parameters.
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proteins motor. For the protein motor, its fluctuating potential
is just one asymmetric dichotomous noise �17�. For the third
example, we consider a reversible chemical reaction A�k1

k2B.
In this reaction, the concentrations of A and B are variable:
we set them as x and y. Then the rate equations can be
written as dx /dt=−k1x+k2y and dy /dt=−k2y+k1x, in which
x+y=N0=const, which is the total concentration of A and B.
By defining �1�x�=x /N0 and �2�y�=y /N0, the equations
become d�1�x� /dt=−k1�1�x�+k2�2�y� and d�2�y� /dt
=−k2�2�y�+k1�1�x�, where �1�x�+�2�y�=1. Here �1�x� and
�2�y� are the probability densities of A and B. It is clear that
the �1�x� and �2�y� equations are just the master equation for
the probability densities of the following multiplicative
asymmetric dichotomous noise: This noise takes the values x
and y; the transition rates from x to y and vice versa are k1
and k2, respectively. Thus, we can say that the reversible
chemical reaction A�k1

k2B is just also another asymmetric
dichotomous noise.

As a conclusion, we have found strong evidence for the
existence of a phenomenon of stochastic giant resonance, the
appearance of which results from the existence of a zero
noise power spectrum with the nonzero signal power spec-
trum for the same parameters. As a possible direction for
further research, it will be very interesting to study whether
the phenomenon of stochastic giant resonance exists in the
semiconductor, the protein motor, and the reversible chemi-
cal reaction, when inputting periodic signals in these systems
�there is the asymmetric dichotomous noise in these sys-
tems�. Here, it should be mentioned that “stochastic reso-
nance” usually denotes a phenomenon different from the
three resonances reported in the present paper. The SNR gets
a maximum �or more� for a finite value of the noise intensity
�and thus its counterintuitive character �see, for instance, the
first article in Ref. �1���. Here the resonances are obtained for
finite values of the frequency of the external signal �includ-
ing the giant� and noise correlation time. Finally, it is neces-
sary to give further clarification of the physical consequence
of the phenomenon of “stochastic giant resonance” reported
by us in this paper: The phenomenon of stochastic giant reso-
nance does not imply a maximum in the output intensity, but
in the SNR.

This research is supported by the National Natural Sci-
ence of Foundation of China, by SRF for ROCS, SEM, and
by K. C. Wong Magna Fund in Ningbo University.

APPENDIX A

w1, w2, w3, w4, G5, and G6 in Eq. �5� are given in this
appendix. They are

w1 = G1 cos � − G2 sin �, w2 = G1 sin � + G2 cos � ,

w3 = G3 cos � − G4 sin � + G7,

w4 = G3 sin � + G4 cos � − G8, G5 = m3V ,

G6 = S2V + Q1,

with

G1 =
1

2
A

f1h3 − f2h4

f1
2 + f2

2 , G2 = −
1

2
A

f1h4 + f2h3

f1
2 + f2

2 ,

G3 =
1

2
A

q1g1 − a�g2

g1
2 + g2

2 , G4 = −
1

2
A

q1g2 + a�g1

g1
2 + g2

2 ,

G7 =
1

2

q2g1

g1
2 + g2

2 ,

G8 =
1

2

q2g2

g1
2 + g2

2 , S2 =

�g − g0�
U0

L
+

U0

L
�− R − g�

c2

L
+ ��g − g0� + 	� −

R + g

L

�R + g�

,

Q1 =

U0
2

L

c2

L
+ ��g − g0� + 	� −

R + g

L

�R + g�

,

g1 = L�2 − �2L + ���L + 2�R + g�� + � c2

L
+ ��g − g0�

− 	� +
R + g

L

�R + g�� ,

g2 = − 2L�� + ���L + 2�R + g�� ,

q1 =
a

L
�− R − g��g − g0�

a

L
,

q2 =
a2

L
, f1 = L�2 +

c2

L
+ ��g − g0� − 	� +

R + g

L

�R + g� ,

f2 = ��L + 2�R + g��� ,

h3 = − 	� +
R + g

L

a − �g − g0�

a

L
, h4 = − a� ,

m3 = −
	� +

R + g

L

U0 +

U0

L
�g − g0�

c2

L
+ ��g − g0� − 	� +

R + g

L

�R + g0�

,

c1 =
f1h3 − f2h4

f1
2 + f2

2 , c2 =
f1h4 + f2h3

f1
2 + f2

2 , cos � =
c1

�c1
2 + c2

2
,

sin � =
c2

�c1
2 + c2

2
, A = �c1

2 + c2
2,
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V =

�U0 +
U0�R + g�

L
−

U0�g0 − g�
L

��R + g� +
�R + g�2

L
−

c2

L
+ ��g0 − g�

,

c =
ra − rb

2
, g =

ra + rb

2
.

APPENDIX B

a10, a8, a6, a4, a2, and a0 in Eq. �9� are given in this
appendix. They are

a10 = 8H4, a8 = 8H5 + 12�2H4,

a6 = 4�4H4 + 12�2H5 + 8H6 + 8F�2H1,

a4 = 4�4H5 + 12�2H6 + 8H7 + 8F�2H2 + 2F�4H1,

a2 = 8F�2H3 + 2F�4H2 + 4�4H6 + 12�2H7,

a0 = 2F�4H3 + 4�4H7,

with

H1 = �L2 + 2Lg11 + g22
2 ��L2 + 2Lf11 + f22

2 � ,

H2 = �f11
2 �L2 + 2Lg11 + g22

2 � + g11
2 �L2 + 2Lf11 + f22

2 �� ,

H3 = f11
2 g11

2 , H4 = − a2L2 + q2L3,

H5 = − aL�ag11 + q1g22 + af11 − h3f22� + Lq2�2Lf11 + f22
2 �

+ q2g11L
2 + �q1L − ag22��Lh3 + f22a� ,

H6 = �f11h3�q1L − ag22� + q1g11�Lh3 + f22a�� − �ag11 + q1g22�


�af11 − h3f22� + q2f11
4 L + q2g11�2Lf11 + f22

2 � ,

H7 = q2g11f11
4 ,

g11 = − �2L + ���L + 2�R + g�� + � c2

L
+ ��− R − g�

− 	� +
R + g

L

�R + g�� ,

g22 = − L� + 2�R + g� ,

f11 =
c2

L
+ ��g − g0� − 	L +

R + g

L

�R + g� ,

f22 = ��L + 2�R + g��2, F = S2V + Q1,

in which q2, h3, q1, g, S2, V, and Q1 are the same as in
Appendix A.
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